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Abstract 

Edge plasmas, such as the tokamak scrape-off layer, exist as a consequence of a balance between cross field diffusion 
and parallel losses. This circumstance is shown to lead to an unconventional form of the parallel ion transport laws under 
certain conditions. The cross field diffusion, whether it is classical or anomalous, affects the parallel ion transport by 
modifying the parallel friction force between different ion species, which could be important for impurity retention in a 
tokamak divertor. 
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1. Introduction 

Numerical models of edge plasmas usually employ 
fluid equations of the type derived e.g. by Braginskii [1] 
for a pure hydrogen plasma and later generalized to de- 
scribe impure plasmas with an arbitrary number of ion 
species [2-4]. However, these equations were derived 
under assumptions that are not always true in the tokamak 
edge. Edge plasmas, such as the tokamak scrape-off layer 
(SOL), exist as a consequence of the balance between 
cross field diffusion and parallel losses. The conventional 
fluid equations do not, in principle, allow lbr such a 
balance. To make this clear, let us consider the parallel 
component of the ion momentum equation in steady state: 

mini ( Vj . 17)Vii I = n i e iE i i -  Vll pj - ( V, Hi)[i + Ri '  (1) 

where Etl is the parallel electric field, mj is the mass, nj 
the density, ej the charge, pj = n i t  j the pressure, H i the 
viscosity, V9 the flow velocity and Rj is the parallel force 
acting on ion species j as a consequence of collisions with 
the other species. If, for instance, the plasma consists of 
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two ion species, hydrogenic ions, j = i and heavy impuri- 
ties, j = z, the force on the former is equal to [3]: 

mini(Vii I - V~II) 
R, = - C, - C z niviiT,., (2) 

Tiz 

where "ri: = 3mli/2Ti3/2/4(2"n')X/Zn:e~e~ In A is the ion- 
impurity collision time, and C I and C 2 are coefficients 
depending on the impurity strength c~ = n : e ~ / n i  e2, tabu- 
lated in Ref. [3]. Solving Eq. (1) for the parallel flow of 
impurities relative to the main ions gives: 

V=II- Viii- [ -  VIIPi + nie iEtL-  C2ni171Ti 
Clmini  

- ( V '  H i ) I I -  m i n i ( V  i • V )Vill] . (3) 

In this expression, the first three terms on the right-hand 
side are the principal parallel driving forces. The last two 
terms, which contain cross field gradients, are assumed to 
be small in the usual derivation of the fluid equations. It is 
thus implicitly assumed that parallel transport is driven 
primarily by parallel gradients. This is, however, not nec- 
essarily true in the SOL. It is a basic property of edge 
plasmas that transport does not occur within each flux tube 
separately since radial diffusion feeds in plasma from the 
core. In principle, it should even be possible for a parallel 
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flow to be driven entirely by radial diffusion in the ab- 
sence of parallel gradients. 

In order to let the last two terms in Eq. (3) be as large 
as the the other terms, we must make the ordering [5]: 

uT/tll  ~ O / W  2, (4) 

where v T is the thermal speed, LII the parallel scale length, 
W the SOL width (which is much smaller than the minor 
radius a) and D the radial diffusion coefficient. The latter 
is responsible for cross field drives in Eq. (3), giving: 

O O~I I  ~ m i n i D V T / W  2 (5) ( V .  lli)ll ~ - O--;Dmini O--t- 

Oni OV/II ~ m i n i D V T / W  2 (6) m,n,(V, V)V,~~ - m i D  Or Or 

where we have taken the strongest gradients to be in the 
radial ( r)  direction and the radial velocity to be diffusive, 
V± • V ~  - D ( O  In n/Or)O/Or ~ D / W  2. The parallel flow 
velocity Vii I is assumed to be of the order of the sound 
speed, as dictated by the Bohm sheath criterion. 

The ordering Eq. (4) implies a balance between radial 
diffusion and parallel losses at sonic flows. In the present 
paper, novel kinetic equations are derived and solved, 
allowing for such a balance and transport laws are con- 
structed for impure, collisional edge plasmas in which the 
perpendicular transport is either due to Coulomb collisions 
between different ion species, or governed by anomalous 
diffusion driven by electrostatic turbulence. 

2. Classical diffusion 

In this section we give an outline of the derivation [6] 
of ion transport laws with the ordering Eq. (4) when the 
diffusion is taken to be classical, caused by ion-impurity 
collisions. The plasma is assumed to consist of a single 
light main ion species, and heavy impurity ions. We are 
interested in magnetized SOLs so W remains larger than 
the ion gyroradius, p~, resulting in three spatial scale 
lengths: 

Pi << W << a, (7) 

where we take parallel and poloidal scale lengths to be 
comparable and of order a. The first of these inequalities 
is used to define the basic small parameter, 6 =- p J W  << 1, 
characterizing a magnetized SOL. The second ratio, W/a ,  
is treated as an independent small parameter. It is conve- 
nient to express the classical diffusion coefficient D~ in 
the form 

D~ =- p2 /2r i : ,  (8) 

with Pi = t;T/~Qi, and O i = e i B / m  i. Then the basic order- 
ing Eq. (4) describing the edge becomes: 

tot ~ Pic a 2 (9) 

where 1.'i:=377"1/2/8"1"i= and where the motion within a 
flux surface is measured by the conventional transit fre- 
quency, tot = vT/a" 

We employ a large drift velocity form of the drift 
kinetic equation [8]. To write the Lorentz operator for 
ion-impurity collisions in the simplest possible form, the 
frame velocity V is chosen to be that of the impurities, 
with V I ~ t,. r >> Vj.. Ion-ion collisions are neglected for 
simplicity by assuming nze 2 >> hie ~ so that the standard 
results can be recovered from the electron-ion Lorentz gas 
ones by replacing the electrons (ions) by the ions (impuri- 
ties). 

Using 3/ and • = ( v -  V ) 2 / 2  to denote gyrophase and 
energy and letting v - V = s + u  with s = s ( e  2 c o s y -  
e3s iny) ,  u = n n . ( v - V ) = u n ,  n = B / B  and n = e 2 X  
e 3, the equation for the gyroaveraged ion distribution 
function f =  ( f ) ,  for the edge orderings, can be shown to 
be: 

i v<l/ ( u +  V ) .  

= (c,(f,)> + o(  o, to#w) ,  (lo) 

where in this section ( . . . )  denotes gyroaverage, f =J~4i 
= n i (mi /2r rT)  3/2 e x p ( - m i • / T )  to lowest order and we 
neglect magnetic drifts (and, therefore, gyroviscosity) by 
assuming t.,i:•>> to t. The gyrophase dependent distribu- 
tion function f =f ,  - . f i  satisfies 

,2< (oj , ov, 
i T = - s c o s o ,  a--7 7 - u  ar & ] . . . .  

( l l )  

to the requisite order. Solving iteratively for the leading 
cos y term in ~ by assuming vi: << I2 i and inserting the 
result in Eq. (10), gives the desired edge-ordered kinetic 
equation in which parallel streaming and radial diffusion 
enter at the same order: 

• aiM, 
(u  + V ) . gfM i + ( e ) ' - ' ~ -  = C i ( J } -  fmi)  + D ( f g , ) ,  

(12) 

with ~=U/(2F.)  1/2, Wj I=n .  V V . n -  V . V / 3 ,  Eli= 
- 17r@- ( m i / e i ) ( V .  VV)II, 

p ( j ; , , ) =  O r - "  Or ~ a?(2~)~/~ ~-~ ~ 

6u OVII] } 
+--7" , (13) 

and 

e l ( 2 • )  1/2 
< ~ ) = - ~ • v . v +  - -  

m i 
u i ~ +  •wr(1 - 3~:2). 

(14) 



P. Helander et al. / Journal of Nuclear Materials 241-243 (1997) 363-368 365 

From Eq. (12) conservation laws for particles, parallel 
momentum and energy can be derived. To the lowest-order 
they may be written as: 

0[ (0, 
~7.(nniVi i ) -~r  D~ Or 2T~r  =0, (15) 

VII P i -  nieEII + miniVIkVILVt = Ri 

0 [ 6m D n OVII t OVII I Oni 
+ 0-'-;~ i c i-'~-r] +miDcoTr ~ Or 2T 

(16) 

+Tr &r[77+2-Y 0-7 " 

When the higher-order moment equations are formed, 
additional moments of f/ enter, so that Eq. (12) must be 
solved for the correction to the Maxwellian by expanding 
in Legendre polynomials, solving a sequence of Spitzer [9] 
problems and integrating to evaluate the transport coeffi- 
cients. Of particular interest is the relative ion-impurity 
flow: 

4 T ( -7 e i ,  ) v,,- v_lt -n-l/2 miui. VIIni-IEII + ~VIIT 

977" I/2 a [ avii 
+ 8ui------f- ~ ortniOc-~r ) (18) 

31r'/2 O~ OVII( Oni 61n---Z OZ) (19) 

-~ 5 v= Or 0-7 + 16T Or " 

Note that all of the terms are the same order. The last term 
involves products of radial gradients and is not part of the 
viscosity term that precedes it. Eq. (19) can be used to find 
the modification R edge to the friction by writing R i = 

R/Brag.+ R edge, using the full parallel ion momentum bal- 
ance equation and recalling that the usual result from 
Braginskii [1] is: 

~.1/2 
R Brag = -3hi'TiT- miniviz(VilL -- V:II). (20)  
- - t  4 

The result is: 

0VII 1-[ 37r } e Inn  i 
R:dg~=miniD¢-~r [ ~ 20-1,  Or 

+ + ] ~ - r  J (21) 

-~-r }'  (22)  

which is not obtained in the standard orders and modifies 

the usual R i - - 0  result which tends to drive impurities 
towards higher temperature regions. 

3. A n o m a l o u s  d i f fus ion  

We now turn our attention to the case when the cross 
field transport is anomalous and driven by electrostatic 
turbulence [7]. In numerical modeling of the tokamak 
edge, anomalous diffusion coefficients across the magnetic 
field are usually invoked in such a way as to match 
experimentally observed density and temperature profiles. 
On the other hand, the transport is generally taken to be 
classical along the field. This ignores the strong coupling 
that exists between the transport along and across the field. 
As we shall see, if the radial transport is anomalous, 
parallel ion transport cannot in general be entirely classi- 
cal. 

We consider a turbulent, impure edge plasma with an 
arbitrary number of ion species present. The perpendicular 
wavelength, 2~r/k . ,  of the turbulence is assumed to be 
large compared with the ion Larmor radius, k±Pi << I. 
Writing the E × B drift velocity, V E = VE + ITE and the 
distribution function fi = ~  + f  for each ion species i, as 
sums of average and fluctuating parts and taking the 
average of the drift kinetic equation over fluctuations, 
gives: 

eiEii O Z- 
(I)]L + Vd + VE)" ITfi + (VE" ~YJ-t)-1- - -  Ci, 

mi OVll 
(23) 

where we now use ( . . .  ) to denote the fluctuation average. 
~'i is the averaged collision operator with all other species 
and magnetic drifts have been neglected as p i / W  smaller 
than parallel streaming. 

The anomalous diffusion generally invoked to account 
for the radial transport comes from the term (lTe • V f )  in 
Eq. (23). Even without employing any specific model for 
the radial transport, we note that it will, in general, affect 
the parallel transport whenever ordering Eq. (4) is satis- 
fied. To demonstrate this phenomenon explicitly in the 
simplest possible situation, we take the turbulence to be 
weak. With the ordering k x P  i ~ kllVT/tO ~ (k± W) 2 
f / f i  << 1, it can be argued [7] that the anomalous transport 
is purely diffusive: 

e( 
(~'E" Vfi) = - [ D~-~r , (24) 

with the anomalous diffusion coefficient: 

1 
Da-= "2f0 ( (~Ter( t )VEr(0))dt '  (25) 

independent of the particle velocity. The integral in Eq. 
(25) is taken along particle orbits and converges in a few 
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correlation times of the random E X B field. The expres- 
sion Eq. (25) is quite general and can be expected to hold 
also for strong turbulence [10], provided classical diffusion 
is negligible, k ~ v T << o), and k ± W >> 1. 

We consider the short-parallel-mean-free-path limit of 
the drift kinetic Eq. (23) with Eq. (24) for the anomalous 
diffusion. The collision operator then dominates and to the 
lowest order the distribution function for each ion species 
becomes Maxwellian: 

f,I, = ni ~ )  exp 1 2T i ~ / ,  , 

(26) 

with a common parallel velocity Vii ~ l' T. The tempera- 
tures T i may be different for different species with very 
disparate masses m i. 

The moment equations associated with Eqs. (23), (24) 
and (26) are: 

~ , (~ ,h )  + Or 7~,.~i- D~T7 = 0, (27) 

= R~ + nieiEii, (28) 

17, ( 5niTiV" miniV"3 ) a 2  + 2 + ?'-7 

[( m. )l 
VF, - D~-~r - - - j - -  + 2 = nieiE!'Vu' 

(29) 

and are analogous to Eqs. (15)-(17). 
in the next order, we may take j~ to be Maxwellian on 

the left-hand side of Eq. (23) and decompose the correc- 
tion • f/I into an odd and an even piece in Ull-= v i i -  VII, 
,fil = Fil + Gil. To obtain the particle and heat fluxes, we 
need only the odd piece Fil, which obeys: 

Ci(Fi,) = £ [ C i / (  Fi, , ~ o )  + Ci,(~io, Fi,)] 
J 

(30) 
[ (mu2 ] 

= ull A,, + " ~  ~ Ai2 ];o, 

where u =- t, - VII, the sum is taken over all species (in- 
cluding electrons), and 

T Ti~rQ'-O-77r 

2miD~, ?,VII 8 In n i 
(31)  

T i ?,r Or  

2 m i D  a 8VII O In T i 
-= (32)  

Ai2  ~1 In ~ T i ar a r  

are thermodynamic forces. Here we have introduced Ell 
E j l - ( m i / e i ) ( V l l  + 17n). 17Vl!. Eq. (30) has the form of a 
Spitzer problem for classical transport along the magnetic 
field. In tact, if the diffusion coefficient D,, is independent 
of velocity, Eq. (30) is mathematically entirely equivalent 
to the multi-ion Spitzer problem governing classical paral- 
lel ion transport, which has been solved previously [2]. The 
only difference is that the usual thermodynamic forces are 
modified by anomalous diffusion through the terms pro- 
portional to D~. These new terms are of the same order as 
the classical ones because of the edge order of Eq. (4). 

We may use the mathematical equivalence to the classi- 
cal problem to write down the inverse transport laws 

ij  2 i/ < = E ( / , 1 <  ~ + ~/ , ,q ~/~j), (33) 
i 

ii 2 • H i = Y', (12 , Ull i + ~ l~  q l J P / ) '  (34) 
) 

relating the total parallel friction force R i acting on the 
species i 

=- f],,n,,li dh, = Ri l/iTi Ail, 

and the heat Diction 

( miu2 5 ) 2 T  2 Hi =- f ?,m< I dh, = 4niTiai2,  (35) 

to the particle and heat fluxes, u i and qlr,' respectively. 
i j __  The transport coefficients l u -  1/~ are identical to the 

classical ones [2]. By inverting the system of equations 
Eqs. (33) and (34), one obtains the particle and heat fluxes 
as linear combinations of the thermodynamic forces. Alter- 
natively, by solving for R i and qll in terms of H i and ulr ,, 
transport equations of the type derived by Braginskii [I] 
and often used in numerical edge computations, are ob- 
tained. Thus, when written in this latter form, the usual 
classical parallel transport laws are modified by the re- 
placement 

2 m / h i D e ,  ~VII O~ 
--> . (36) ni~lTJ n i x i e -  T i ?'r ?'r 

for all j, in the expressions for R, and qll, 
For instance, in a hydrogen plasma with heavy impuri- 

ties, the classical force Eq. (2), modified by the turbulence, 
becomes 

mini (  V,I ! -  V_II ) 
R i = C I 

"Ft.. 

__ Co(Hi~7]~,7; _ _  2 m i n i D  ?'Vi, al} Or " (37) 

More generally, when there are many ion species pre- 
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sent, inverting Eq. (34) to obtain Ull i and substituting in 
Eq. (33) gives the force acting on each species as 

R i = - ~ j  [aif  m i n i ( u l l i - u l l j ) .  "ri i 

( 2mjnjD________z~OVl, cgTj ) ] (38) 
+~ij n j V l ~ -  ~ Or Or ' 

where the coefficients c~ij and /3ij are complicated func- 
tions of the masses, densities and charges of all species. 
Explicit formulae exist in the literature, as well as prescrip- 
tions for how to evaluate them numerically [4]. They do 
not change as a consequence of the edge ordering Eq. (4), 
although the force itself is modified by the replacement 
Eq. (36). 

A new and unconventional type of thermal force [7] has 
appeared as the third term in Eqs. (37) and (38). It arises in 
a way similar to the usual thermal force (the second term, 
proportional to VIIT), i.e. as a consequence of an asymme- 
try in Ull in the distribution function of the Lighter species 
(in Eq. (37) the hydrogenic ions (i)). For the usual thermal 
force, the asymmetry arises since the particles travelling in 
the direction of VIT , are colder than the ones moving in the 
opposite direction. The former are therefore more colli- 
sional and push the heavier particles in the direction of 
VJi. In an edge plasma with OVii/Or < 0 and OTi/Or < O, 
anomalous diffusion transports hot ions with large Vir 
outwards in the SOL, where ions with Ull < 0 therefore 
tend to be colder and hence more collisional, than the ones 
with ull > 0. Thus, again, a thermal force arises. 

a turbulent, multi-species plasma it is given by the last 
term in Eq. (38). In both cases, the new force, although 
acting in the parallel direction, is driven only by radial 
gradients. 

It may be of practical interest for impurity retention in 
tokamak divertors, that if OVIJOr and OTi/Or have the 
same sign, the force proportional to (OVqJOr)(OTi/Or) 
opposes the classical one, which otherwise tends to drive 
impurity ions from the divertor towards the core plasma. In 
the divertor plasma, the parallel velocity and the tempera- 
ture usually both have a maximum near the separatrix, 
falling off towards the outer SOL and towards the private 
flux region. In this case the new force pushes impurities 
towards the divertor plates. To assess its effect more 
accurately requires numerical simulation of the fluid equa- 
tions in realistic geometry. Without such a numerical 
calculation it is difficult to establish the actual magnitude 
of the new terms found in the present work. The funda- 
mental arguments in Section I force us to adopt the 
ordering Eq. (4), which, taken literally, implies that the 
new terms are of the same order as the conventional ones. 
However, in a medium-sized tokamak with L =  10 m, 
D = 0.2 me/s ,  W =  1 cm, we have cx/LII < D/W 2 only 
at quite low temperatures, T < 4 eV. On the other hand, 
the new terms in the ion-impurity force may, even if they 
are relatively small, alter the balance between thermal and 
frictional forces. In any case, the new results presented in 
this work are mostly likely to be important in edge plas- 
mas with strongly sheared parallel flows. 
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